Abstract

Using superfield Dyson-Schwinger equations, we compute the infrared dynamics of the semi-amputated full vertex, corresponding to the effective running gauge coupling, in N-flavour {\mathcal N}=1 supersymmetric QED(3). It is shown that the presence of a supersymmetry-preserving mass for the matter multiplet stabilizes the infrared gauge coupling against oscillations present in the massless case, and we therefore infer that the massive vacuum is thus selected at the level of the (quantum) effective action. We further demonstrate that such a mass can indeed be generated dynamically in a self-consistent way by appealing to the superfield Dyson-Schwinger gap equation for the full matter propagator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.