Abstract

We study full QCD at finite density and low temperature with light quark mass using the complex Langevin method. Since the singular drift problem turns out to be mild on a $4^3 \times 8$ lattice we use, the gauge cooling is performed only to control the unitarity norm in this exploratory study. We report on our preliminary data obtained from the complex Langevin simulation up to certain Langevin time. While the data are still noisy due to lack of statistics, the onset of the baryon number density seems to occur at larger $\mu$ than half the pion mass, which is the value for the phase quenched QCD. The validity of our simulation is tested by the recently proposed criterion based on the probability distribution of the drift term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.