Abstract
The harmonic formulation of Einstein's field equations is considered, where the gauge conditions are introduced as dynamical constraints. The difference between the fully constrained approach (used in analytical approximations) and the free evolution one (used in most numerical approximations) is pointed out. As a generalization, quasi-stationary gauge conditions are also discussed, including numerical experiments with the gauge-waves testbed. The complementary 3+1 approach is also considered, where constraints are related instead with energy and momentum first integrals and the gauge must be provided separately. The relationship between the two formalisms is discussed in a more general framework (Z4 formalism). Different strategies in black hole simulations follow when introducing singularity avoidance as a requirement. More flexible quasi-stationary gauge conditions are proposed in this context, which can be seen as generalizations of the current “freezing shift” prescriptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.