Abstract

Single strand DNA (ss-DNA) fragments act as negative potential gating agents that increase the hole density in graphene. Patterning of biomolecules on graphene could provide new avenues to modulate the electrical properties. Current-voltage characterization of this hybrid ss-DNA / graphene system indicates a shift of the Dirac point and intrinsic conductance after ss-DNA is deposited. The effect of the ss-DNA is to increase the hole density in the graphene. The increased hole density is calculated to be 2 × 1012 cm-2. This increase is consistent with the Raman frequency shifts in the G peak and 2D band positions and the corresponding changes in the G-peak full-width half maximum. Ab initio calculations using density functional theory rule out significant charge transfer or modification of the graphene bandstructure in the presence of the ss-DNA fragments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call