Abstract

Nervous systems distinguish between self- and other-generated movements by monitoring discrepancies between planned and performed actions. To do so, corollary discharges are conveyed to sensory areas and gate expected reafference. Such gating is observed in neonatal rats during wake-related movements. In contrast, twitches, which are self-generated movements produced during active (or REM) sleep, differ from wake movements in that they reliably trigger robust neural activity. Accordingly, we hypothesized that the gating actions of corollary discharge are absent during twitching. Here, we identify the external cuneate nucleus (ECN), which processes sensory input from the forelimbs, as a site of movement-dependent sensory gating during wake. Whereas pharmacological disinhibition of the ECN unmasked wake-related reafference, twitch-related reafference was unaffected. This is the first demonstration of a neural comparator that is differentially engaged depending on the kind of movement produced. This mechanism explains how twitches, although self-generated, trigger abundant reafferent activation of sensorimotor circuits in the developing brain.

Highlights

  • Animals of diverse vertebrate and invertebrate species distinguish between sensations arising from self-generated movements from those arising from other-generated movements (Crapse and Sommer, 2008; Sommer and Wurtz, 2008)

  • We previously demonstrated in week-old rats that wake-related movements do not trigger substantial reafference in sensorimotor cortex (SMC)

  • Spindle bursts and multiunit activity (MUA) were prominent during periods of twitching and were virtually absent during periods of wake movements

Read more

Summary

Introduction

Animals of diverse vertebrate and invertebrate species distinguish between sensations arising from self-generated movements from those arising from other-generated movements (Crapse and Sommer, 2008; Sommer and Wurtz, 2008) To make this distinction between self and other, motor areas produce copies of motor commands (i.e., corollary discharges) that are directly compared with sensory signals arising from self-generated movements (i.e., reafference; [Poulet and Hedwig 2006; Sommer and Wurtz 2002]). At the level of the neural comparator, reafference is blocked when there are no discrepancies between the corollary discharge and reafferent signals (Poulet and Hedwig 2006; Bell, 2001; Brooks and Cullen, 2014; Bell, 1989). There must be a neural structure, located somewhere

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call