Abstract
Sensory integration contributes to temporal coordination of the movement with external rhythms. How the information flowing of sensory inputs is regulated with increasing tapping rates and its function remains unknown. Here, somatosensory evoked potentials to ulnar nerve stimulation were recorded during auditory-cued repetitive right-index finger tapping at 0.5, 1, 2, 3, and 4Hz in 13 healthy subjects. We found that sensory inputs were suppressed at subcortical level (represented by P14) and primary somatosensory cortex (S1, represented by N20/P25) during repetitive tapping. This suppression was decreased in S1 but not in subcortical level during fast repetitive tapping (2, 3, and 4Hz) compared with slow repetitive tapping (0.5 and 1Hz). Furthermore, we assessed the ability to analyze temporal information in S1 by measuring the somatosensory temporal discrimination threshold (STDT). STDT increased during fast repetitive tapping compared with slow repetitive tapping, which was negatively correlated with the task performance of phase shift and positively correlated with the peak-to-peak amplitude (% of resting) in S1 but not in subcortical level. These novel findings indicate that the increased sensory input (lower sensory gating) in S1 may lead to greater temporal uncertainty for sensorimotor integration dereasing the performance of repetitive movement during increasing tapping rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.