Abstract

Single-mode squeezing and Fourier transformation operations are two essential logical gates in continuous-variable quantum computation, which have been experimentally implemented by means of an optical four-mode cluster state. In this paper, we present a simpler and more efficient protocol based on the use of Einstein-Podolsky-Rosen two-mode entangled states to realize the same operations. The theoretical calculations and the experimental results demonstrate that the presented scheme not only decreases the requirement to the resource quantum states at the largest extent but also enhances significantly the squeezing degree and the fidelity of the resultant modes under an identical resource condition. That is because in our system the influence of the excess noises deriving from the imperfect squeezing of the resource states is degraded. The gate operations applying two-mode entanglement can be utilized as a basic element in a future quantum computer involving a large-scale cluster state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.