Abstract
The main goal of this study was to investigate the minimum amount of sensory information required to recognize spoken words (isolation points [IPs]) in listeners with cochlear implants (CIs) and investigate facilitative effects of semantic contexts on the IPs. Listeners with CIs as well as those with normal hearing (NH) participated in the study. In Experiment 1, the CI users listened to unprocessed (full-spectrum) stimuli and individuals with NH listened to full-spectrum or vocoder processed speech. IPs were determined for both groups who listened to gated consonant-nucleus-consonant words that were selected based on lexical properties. In Experiment 2, the role of semantic context on IPs was evaluated. Target stimuli were chosen from the Revised Speech Perception in Noise corpus based on the lexical properties of the final words. The results indicated that spectrotemporal degradations impacted IPs for gated words adversely, and CI users as well as participants with NH listening to vocoded speech had longer IPs than participants with NH who listened to full-spectrum speech. In addition, there was a clear disadvantage due to lack of semantic context in all groups regardless of the spectral composition of the target speech (full spectrum or vocoded). Finally, we showed that CI users (and users with NH with vocoded speech) can overcome such word processing difficulties with the help of semantic context and perform as well as listeners with NH. Word recognition occurs even before the entire word is heard because listeners with NH associate an acoustic input with its mental representation to understand speech. The results of this study provide insight into the role of spectral degradation on the processing of spoken words in isolation and the potential benefits of semantic context. These results may also explain why CI users rely substantially on semantic context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of speech, language, and hearing research : JSLHR
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.