Abstract
Knowledge graph (KG) is a multi-relational data that has proven valuable for many tasks including decision making and semantic search. In this paper, we present GTGAT (Gated Tree-based Graph Attention), a method for tackling the problems of transductive and inductive reasoning in generalized KGs. Based on recent advancement of graph attention network (GAT), we develop a gated tree-based method to distill valuable information in neighborhood via hierarchical-aware and semantic-aware attention mechanism. Our approach not only addresses several key challenges of GAT but is also capable of undertaking multiple downstream tasks. Experimental results have revealed that our proposed GTGAT has matched state-of-the-art approaches across transductive benchmarks on the Cora, Citeseer, and electronic medical record networks (EMRNet). Meanwhile, the inductive experiments on medical knowledge graphs show that GTGAT surpasses the best competing methods for personalized disease diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.