Abstract

The characteristics of various detector responses are studied to understand the cause of various systematic biases and to minimize these undesirable effects in measurements of transient signals with large dynamic range. We quantitatively evaluated signal induced bias, gain variation, and the linearity of commonly used gated photomultipliers in the current integrating mode. Analysis of the results indicates that impurity ions inside the photomultiplier tube are the source of the signal induced bias and gain variation. Two different photomultiplier tubes used in this study show significant differences in the magnitude and decay behavior of signal induced bias. We found it can be minimized by using an external amplifier to reduce PMT gain, and by applying a low potential between the cathode and first dynode. The linearity of a photomultiplier tube is also studied over a large dynamic range of input intensities employing a new technique which does not require an absolute calibration. The result of this study shows that the photomultiplier response is linear only for a limited input intensity range below a certain anode current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.