Abstract

Chemotherapy-inhibiting tumor cell evolution to drug-resistance is potentially suppressed by using a drug delivery vehicle (DDV) that has gating. Gating would be used to increase tumor-selectivity of delivery of DDV packaged drug. Tumor-selectivity increase would make possible increase in tumor-delivered drug dose, which would suppress opportunities to evolve drug resistance. Currently used DDVs do not have gating but gating is a natural feature of some bacteriophages (phages). Phage T4, which has recently been found highly persistent in murine blood, is a potential gated DDV. Thus, here, we proceed towards a T4-DDV by developing (1) improved procedure for generating high concentrations and amounts of phage T4, (2) elevated temperature-driven gate-opening and ethidium- and bleomycin-loading, and (3) purification of loaded T4 by rate zonal centrifugation. We test for loading by native agarose gel electrophoresis (AGE) with fluorescence detection. We observe loading in both phage T4 and T4 (tail-free) heads. The loaded particles have an openable, closed gate. Stored, mature T4 phages and phage heads do not release ethidium during at least a month at 4 °C and 6 days at 37 and 42 °C. Tumor-specific T4 phage delivery is projected via both the EPR effect and high T4 persistence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.