Abstract

We prove that for Hilbert space operators X X and Y Y , it follows that \[ lim t ā†’ 0 + | | X + t Y | | āˆ’ | | X | | t = 1 | | X | | inf Īµ > 0 sup Ļ† āˆˆ H Īµ , | | Ļ† | | = 1 Re ā” āŸ© Y Ļ† , X Ļ† āŸ© , \lim _{t\to 0^+}\frac {||X+tY||-||X||}t=\frac 1{||X||} \inf _{\varepsilon >0}\sup _{\varphi \in H_\varepsilon ,||\varphi ||=1} \operatorname {Re}\left >Y\varphi ,X\varphi \right >, \] where H Īµ = E X āˆ— X ( ( | | X | | āˆ’ Īµ ) 2 , | | X | | 2 ) H_\varepsilon =E_{X^*X}((||X||-\varepsilon )^2,||X||^2) . Using the concept of Ļ† \varphi -Gateaux derivative, we apply this result to characterize orthogonality in the sense of James in B ( H ) B(H) , and to give an easy proof of the characterization of smooth points in B ( H ) B(H) .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call