Abstract
Photodetectors and imagers based on 2D layered materials are currently subject to a rapidly expanding application space, with an increasing demand for cost-effective and lightweight devices. However, the underlying carrier transport across the 2D homo- or heterojunction channel driven by the external electric field, like a gate or drain bias, is still unclear. Here, a visible-near infrared photodetector based on van der Waals stacked molybdenum telluride (MoTe2 ) and black phosphorus (BP) is reported. The type-I and type-II band alignment can be tuned by the gate and drain voltage combined showing a dynamic modulation of the conduction polarity and negative differential transconductance. The heterojunction devices show a good photoresponse to light illumination ranging from 520-2000nm. The built-in potential at the MoTe2 /BP interface can efficiently separate photoexcited electron-hole pairs with a high responsivity of 290mAW-1 , an external quantum efficiency of 70%, and a fast photoresponse of 78µs under zero bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.