Abstract

Stimulated by novel properties in topological insulators, experimentally realizing quantum phases of matter and employing control over their properties have become a central goal in condensed matter physics. β-silver telluride (Ag2Te) is predicted to be a new type narrow-gap topological insulator. While enormous efforts have been plunged into the topological nature in silver chalcogenides, sophisticated research on low-dimensional nanostructures remains unexplored. Here, we report the record-high bulk carrier mobility of 298 600 cm2/(V s) in high-quality Ag2Te nanoplates and the coexistence of the surface and bulk state from systematic Shubnikov-de Haas oscillations measurements. By tuning the correlation between the top and bottom surfaces, we can effectively enhance the contribution of the surface to the total conductance up to 87% at 130 V. These results are instrumental to the high-mobility physics study and even suitable to explore exotic topological phenomena in this material system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.