Abstract
Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point, and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.
Highlights
Transport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions
The amplitude of the Shubnikov-de Haas (SdH) oscillations decreases with increasing T
We are able to use the gate to tune the electronic transport from being dominated by the metallic bulk to a bulk-insulating regime such that surface state contributes mostly to the conduction at low temperatures
Summary
We report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-k SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. For Vg 5 26.5 V and 215 V, we observe an insulating behavior (R increases with decreasing T, due to bulk carrier freeze-out) for 10 K , T , 30 K with R saturating at a Vg-dependent value (Rsat) for T , 10 K This Rsat corresponds to EF inside the bulk bandgap and the low-T metallic conduction of topological surface states (TSS, see band schematic in the inset of Fig. 2b). Observing such WAL to WL transition as predicted[24,25] is another piece of evidence that we are observing topological surface states transport
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.