Abstract
AbstractThe dangling‐bond‐free surfaces of 2D materials enable them to possess various degrees of freedom to form heterostructures with non‐2D materials. This allows for the combination of the advantages of different dimensional materials to fabricate van der Waals (vdW) heterostructures, thereby improving device performance and even bringing diversity and novelty. Herein, a mixed‐dimensional vdW heterostructure photodiode comprising a 1D tellurium (Te) nanowire and a 2D molybdenum ditelluride (MoTe2) flake is demonstrated. Forward rectifying and backward rectifying characteristics are realized by applying different gate voltage. The device displays a broad spectral response from visible to near‐infrared and exhibits ultrahigh external quantum efficiency of 7.16 × 103% for photogating effect. Moreover, the response time can be improved by controlling gate voltage and a rapid response time of 4.8 ms is achieved. These mixed‐dimensional vdW heterojunctions, which take advantages of both 1D and 2D semiconductors, will facilitate the development of next‐generation electronics and optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.