Abstract

We demonstrate a substantial modulation of the optical properties of multilayer graphene (∼100 layers) using a simple device consisting of a multilayer graphene/polymer electrolyte membrane/gold film stack. Applying a voltage of 3–4 V drives the intercalation of anion [TFSI]− [ion liquid diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide [DEME][TFSI]] resulting in the reversible modulation of the properties of this optically dense material. Upon intercalation, we observe an abrupt shift of 35 cm−1 in the G band Raman mode, an abrupt increase in FTIR reflectance over the wavelength range from 1.67 to 5 μm (2000–6000 cm−1), and an abrupt increase in luminescent background observed in the Raman spectra of graphene. All of these abrupt changes in the optical properties of this material arise from the intercalation of the TFSI− ion and the associated change in the free carrier density (Δn = 1020 cm−3). Suppression of the 2D band Raman mode observed around 3 V corresponds to Pauli blocking of the double resonance Raman process and indicates a modulation of the Fermi energy of ΔEF = 1.1 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.