Abstract

Abstract The recent discovery of natural biaxial hyperbolicity in van der Waals crystals, such as α-MoO3, has opened up new avenues for mid-IR nanophotonics due to their deep subwavelength phonon polaritons. However, a significant challenge is the lack of active tunability of these hyperbolic phonon polaritons. In this work, we investigate heterostructures of graphene and α-MoO3 for actively tunable hybrid plasmon phonon polariton modes via electrostatic gating in the mid-infrared spectral region. We observe a unique propagation direction dependent hybridization of graphene plasmon polaritons with hyperbolic phonon polaritons for experimentally feasible values of graphene chemical potential. We further report an application to tunable valley quantum interference in this system with a broad operational bandwidth due to the formation of these hybrid modes. This work presents a lithography-free alternative for actively tunable, anisotropic spontaneous emission enhancement using a sub-wavelength thick naturally biaxial hyperbolic material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.