Abstract

The gate-recess technology for Si delta-doped InAs/AlSb high-electron-mobility transistors (HEMTs) has been investigated by combining atomic force microscopy (AFM) inspection of the gate-recess versus time with electrical device characterization. Deposition of the gate metal on the In0.5Al0.5As protection layer or on the underlying AlSb Schottky layer resulted in devices suffering from high gate-leakage current. Superior dc and high frequency device performance were obtained for HEMTs with an insulating layer between the gate and the Schottky layer resulting in a reduction of the gate leakage current IG by more than two orders of magnitude at a drain-to-source voltage VDS of 0.1 V. The existence of this intermediate insulating layer was evident from the electrical measurements. AFM measurements suggested that the insulating layer was due to a native oxidation of the AlSb Schottky layer. The insulated-gate HEMT with a gate length of 225 nm exhibited a maximum drain current ID higher than 500 mA/mm with good pinchoff characteristics, a dc transconductance gm of 1300 mS/mm, and extrinsic values for cutoff frequency fT and maximum frequency of oscillation fmax of 160 and 120 GHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.