Abstract
The rapid development of highly integrated photonic circuits has been driving electro-optic (EO) devices to increasingly compact sizes, with the perspective of being able to control light at the nanoscale. However, tunability with spatial resolution below 10 nm scale with conventional approaches, such as metallic nanowires, remains a challenge. Here, we show a graphene-coated nanowire system aiming at beam spatial modulation at a deeply subwavelength scale. By analytically and numerically investigating the eigenmodal properties of this system, we found that beam power can propagate along either a swinging or a helical path in the hybrid nanowire. In particular, the period of the swing beam and the chirality and period of the helix beam can be flexibly controlled by tuning the chemical potential of graphene via the gate voltage. Significantly, due to its good modal confinement, such a beam can be independently manipulated even in the presence of another nanowire at a separation of 40 nm, which opens a real...
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.