Abstract

The use of a micro genetic algorithm (mGA)-based approach to solve a bi-objective optimization of an injection mould design problem is presented. The advantage of the mGA-based approach is that it requires fewer computational resources than a conventional GA because it has a smaller population than a conventional GA. The main drawback of the mGA-based approach is that design diversity is not secured when multi-modal and multi-objective designs are investigated. To implement the mGA-based bi-objective optimization procedure, the present study proposes a memory set, a filtering process, weight control, and reproduction from the memory set in order to explore new optimal solutions, and identify more-evenly distributed Pareto surfaces. A number of mathematical functions and a typical structural optimization problem are tested to verify the proposed strategies. The approach is subsequently applied to the bi-objective injection moulding design problem of minimizing both the maximum injection pressure and maximum pressure difference between the gate positions in the runner system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.