Abstract

A dynamic metal-organic framework that consists of d-champhorate-based homochiral protuberant-grid-type networks can successively participate in gate-opening and closing processes for many cycles, which were triggered by the stimuli of the adsorption and desorption of CO2 to highly and specifically recognize CO2 over N2 and H2 with a high CO2 uptake of 90 mg g-1 under 35 bar at 298 K. It is highly thermally stable and the structure remains intact at least for ten reversible gate-opening and -closing processes. Thus, it is a potential candidate for industrial CO2 capture and facile release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.