Abstract
This paper presents a compact gate leakage current partitioning model for nanoscale Double Gate (DG) MOSFETs, using analytical models of the direct tunneling gate leakage current. Gate leakage current becomes important and an essential aspect of MOSFET modeling as the gate oxide thickness is scaled down to 1nm and below in advanced CMOS processes. We considered an ideal interface (ideal case without an interfacial layer) and two layers high k dielectric materials as gate insulators. In the case of two layers, a thin layer of SiO2 as an interfacial layer is considered. The results of the gate current partitioning components into drain and source show good agreement with 2D TCAD numerical device simulation (Silvaco Atlas).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.