Abstract

Quantum transport measurements are performed in gate-defined, high-quality, two-dimensional hole and electron systems in an undoped InSb quantum well. For both polarities, the carrier systems show tunable spin-orbit interaction as extracted from weak antilocalization measurements. The effective mass of InSb holes strongly increases with carrier density as determined from the temperature dependence of Shubnikov--de Haas oscillations. Coincidence measurements in a tilted magnetic field are performed to estimate the spin susceptibility of the InSb two-dimensional hole system. The $g$ factor of the two-dimensional hole system decreases rapidly with increasing carrier density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.