Abstract

The precise control and deep understanding of quantum interference in carbon nanotube (CNT) devices are particularly crucial not only for exploring quantum coherent phenomena in clean one-dimensional electronic systems, but also for developing carbon-based nanoelectronics or quantum devices. Here, we construct a double split-gate structure to explore the Aharonov-Bohm (AB) interference effect in individual single-wall CNT p-n junction devices. For the first time, we achieve the AB modulation of conductance with coaxial magnetic fields as low as 3T, where the flux through the tube is much smaller than the flux quantum. We further demonstrate direct electric-field control of the nonmonotonic magnetoconductance through a gate-tunable built-in electric field, which can be quantitatively understood in combination with the AB phase effect and Landau-Zener tunneling in a CNT p-n junction. Moreover, the nonmonotonic magnetoconductance behavior can be strongly enhanced in the presence of Fabry-Pérot resonances. Our Letter paves the way for exploring and manipulating quantum interference effects with combining magnetic and electric field controls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call