Abstract

We investigate the humidity sensing performance and mechanism of few-layer-thick rhenium disulfide (ReS2) field-effect transistors (FETs) under gate bias operation. Consequently, a negative gate bias exhibits the sensor response, exceeding 90% mainly in the low relative humidity (RH) range. Meanwhile, the threshold voltage change was discovered to be a superior sensing parameter to achieve a broad monitoring of RH range with high response and sensitivity. The approach obtained a practical sensitivity of 0.4 V per 1% RH, which exceed a majority of previous studies with the pristine 2D materials. Besides, our devices display reversible adsorption–desorption and long-term stability operations even after a one-month period. This suggests the sensor capacity to function in real-time applications with a short response and recovery times. These outcomes offer support in the development of adaptable tunable humidity sensors based on ReS2 FETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call