Abstract

We evaluate the total ionizing dose (TID) responses of InGaAs nMOS FinFETs with different gate lengths irradiated with 10-keV X-rays under different gate biases. The largest degradation after irradiation occurs at V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> = -1 V. Radiation-induced trapped positive charge dominates the TID response of InGaAs FinFET transistors, consistent with previous results for InGaAs multifin capacitors. Shorter gate-length devices show larger radiation-induced charge trapping than longer gate-length devices, most likely due to the electrostatic effects of trapped charge in the surrounding SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> isolation and SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> spacer oxides. The 1/f noise measurements indicate a high trap density and a nonuniform defect-energy distribution, consistent with a strong variation of effective border-trap density with surface potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.