Abstract

Previous studies with cultured granulosa cells implicated GATA4 in gonadotropin regulation of the steroidogenic acute regulatory protein (STAR) gene. Caveats to these prior studies exist. First, GATA4 levels are reduced in granulosa-luteal cells after the LH surge when GATA6 expression is relatively high. Second, STAR mRNA expression is negligible in granulosa cells until after the LH surge. Both exogenous GATA4 and GATA6 can transactivate STAR gene promoter constructs. We used an RNA interference (RNAi) approach to determine the contributions of GATA4 and GATA6 to cAMP analog regulation of the endogenous STAR gene in luteinizing granulosa cells. STAR mRNA was stimulated by cAMP under control RNAi conditions. Surprisingly, GATA4 reduction by its respective RNAi approximately doubled the cAMP induction of STAR mRNA. At 24 h cAMP treatment, this augmentation was abolished by co-down-regulation of GATA4+GATA6. GATA6 down-regulation by itself did not alter STAR mRNA levels. GATA4+GATA6 co-down-regulation elevated basal CYP11A mRNA at 24 h treatment but did not affect its induction by cAMP. Basal levels of HSD3B mRNA were reduced by GATA4 RNAi conditions leading to a greater fold induction of its mRNA by cAMP. Fold cAMP-stimulated progesterone production was enhanced by GATA4 down-regulation but not by GATA4+GATA6 co-down-regulation. These data implicate GATA6 as the facilitator in cAMP-stimulated STAR mRNA and downstream progesterone accumulation under reduced GATA4 conditions. Data also demonstrate that basal levels of GATA4/6 are not required for cAMP induction of the STAR gene. The altered ratio of GATA4 to GATA6 after ovulation may allow GATA6 to enhance STAR mRNA accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call