Abstract
Metanephric kidney induction critically depends on mesenchymal–epithelial interactions in the caudal region of the nephric (or Wolffian) duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT) observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of β-catenin function in the nephric duct and demonstrate that the β-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of β-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct.
Highlights
In human, urinary tract anomalies rank among the most common birth defects, with an estimated occurrence of 1 in 250 live births [1]
We previously reported the critical role played by Gata3 in proliferation control and nephric duct guidance in the pro/ mesonephros [33]
In order to address the later role of Gata3 in urogenital system morphogenesis, we inactivated Gata3 in the nephric duct using the HoxB7-Cre transgenic line (Gata3ND2/2)
Summary
Urinary tract anomalies rank among the most common birth defects, with an estimated occurrence of 1 in 250 live births [1] Most of these ontogenic malformations are classified as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) [2], which is a highly heterogenous condition frequently diagnosed in combination with genital tract anomalies [3]. The development of the urogenital system (UGS) begins with the formation of the nephric duct (or Wolffian duct) [5,6] This epithelial duct is a central UGS component among all vertebrates and serves as the primordium for the ureter, kidney collecting duct system and male genital tract [7]. The ureteric bud subsequently undergoes several branching cycles to form the collecting duct system, whereas the ureter tips induce nephron formation in the surrounding mesenchyme [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.