Abstract

Ga/sub 0.51/In/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As/GaAs pseudomorphic doped-channel FETs exhibiting excellent DC and microwave characteristics were successfully fabricated. A high peak transconductance of 350 mS/mm, a high gate-drain breakdown voltage of 31 V and a high maximum current density (575 mA/mm) were achieved. These results demonstrate that high transconductance and high breakdown voltage could be attained by using In/sub 0.15/Ga/sub 0.85/As and Ga/sub 0.51/In/sub 0.49/P as the channel and insulator materials, respectively. We also measured a high-current gain cut-off frequency f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> of 23.3 GHz and a high maximum oscillation frequency f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> of 50.8 GHz for a 1-μm gate length device at 300 K. RF values where higher than those of other works of InGaAs channel pseudomorphic doped-channel FETs (DCFETs), high electron mobility transistors (HEMTs), and heterostructure FETs (HFETs) with the same gate length and were mainly attributed to higher transconductance due to higher mobility, while the DC values were comparable with the other works. The above results suggested that Ga/sub 0.51/In/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As/GaAs doped channel FET's were were very suitable for microwave high power device application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.