Abstract

Gas turbine engines are very complex (with 20–40,000 parts) and have extreme operating conditions. The important physical phenomena take place on scales from 10–100 microns to meters. A complete and accurate dynamic simulation of an entire engine is enormously demanding. Designing a complex system, like a gas turbine engine, will require fast, accurate simulations of computational models from multiple engineering disciplines along with sophisticated optimization techniques to help guide the design process. In this paper, we describe the architecture of an agent-based software framework for the simulation of various aspects of a gas turbine engine, utilizing a “network” of collaborating numerical objects through a set of interfaces among the engine parts. Moreover, we present its implementation using the Grasshopper agent middleware and provide simulation results that show the feasibility of the computational paradigm implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.