Abstract

Recent advances in pluripotent stem cell culture allow researchers to generate not only most embryonic cell types, but also morphologies of many embryonic structures, entirely in vitro. This recreation of embryonic form from naïve cells, known as synthetic morphogenesis, has important implications for both developmental biology and regenerative medicine. However, the capacity of stem cell-based models to recapitulate the morphogenetic cell behaviors that shape natural embryos remains unclear. In this review, we explore several examples of synthetic morphogenesis, with a focus on models of gastrulation and surrounding stages. By varying cell types, source species, and culture conditions, researchers have recreated aspects of primitive streak formation, emergence and elongation of the primary embryonic axis, neural tube closure, and more. Here, we describe cell behaviors within in vitro/ex vivo systems that mimic in vivo morphogenesis and highlight opportunities for more complete models of early development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.