Abstract

When a Xenopus XTC cell-derived mesoderm-inducing factor (MIF) is injected into the blastocoel of Xenopus embryos before gastrulation, they develop almost normally until just after the onset of mesoderm involution at the internal blastoporal lip. Cells from the entire lining of the blastocoel roof and inner marginal zone then undergo a synchronous, sudden change of contact and arrangement which resembles the transformation undergone by normal mesoderm at its time of involution at the vegetal edge of the marginal zone. We describe a dose-dependent spectrum of subsequent abnormalities in gastrulation and, in cases where gastrulation partially recovers, in the resulting larval pattern. Because of such recovery, embryos injected with widely different doses may appear equally abnormal at the early gastrula stage but very different by control larval stages. Extra spinocaudal axial patterns, in the area of ectopic mesoderm, are seen after MIF doses that just permit recovery of gastrulation. The sudden cellular transformation corresponding to involution, in the ectopically specified mesoderm, spreads throughout the animal cap within 15 min in individuals, at a time significantly later than the earliest normal transformation in the marginal zone. No systematic alteration could, however, be detected in its timing, in relation to a 250-fold range of injected MIF concentration or a 3.5-hr difference in time of injection. The severity of the effects on final embryonic pattern is largely independent of the blastular stage of injections. Splitting of the total injected dose into two, separated by 2 to 3 hr of blastular development, reveals that the degree of effect on gastrulation and patterning depends only upon the highest experienced concentration at any time before response. When fibroblast growth factor (bFGF), a different effective mesoderm inducer, is similarly injected, a similar abnormal cell behavior and ectopic mesoderm formation are seen, but beginning only at midgastrular stages some 1.5 hr beyond that characteristic of XTC-MIF. The findings are introduced and discussed in terms of models for the natural organization of the time course of gastrulation and mesodermal pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.