Abstract

The paper aims to explore the potential benefits provided by an organically modified montmorillonite (nanoclay) in the problematic management of the Helicobacter pylori gastric infection that is one of the most prevalent infectious diseases worldwide. Two nanoclay samples were produced by the intercalation of tetracycline (TC) into the interlayer of montmorillonite (MM) under two different pH reaction conditions (pH 3.0 and 8.7). MM/TC nanoclays were characterized by EDX, XRD, FTIR, DSC, drug adsorption extent, in vitro mucoadhesiveness and desorption in simulated gastric media. The reaction between MM and TC led to a complete MM cation (Na+ and Ca2+) exchange process, an increase of MM characteristic interlayer spacing as well as an involvement of NHR3+ group of TC, regardless of the reaction pH value. However, MM/TC nanoclay obtained under alkaline conditions provided a lower TC adsorption as well as a drug fraction weakly linked to MM in comparison with the nanoclay obtained in acidic conditions. Both the nanoclays exhibited good mucoadhesion properties to porcine mucin and TC desorption occurring mainly via a cation exchange process by H+ ions. Based on the results obtained, TC intercalation into MM nanoplatelets could represent a potential advantageous approach allowing the antibiotic to distribute homogeneously on the gastric mucosa, diffuse through the gastric mucus layer and achieve the microorganism localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call