Abstract

Background and the purpose of the study: Risedronate sodium inhibits osteoclast bone resorption and modulates bone metabolism. Risedronate has a high affinity for hydroxyapatite crystals in bone and is a potent antiresorptive agent. In the present investigation efforts were made to improve the bioavailability of risedronate sodium by increasing the residence time of the drug through sustained-release matrix capsule formulation via gastroretentive mechanism. Capsules were prepared by wet granulation technique. The influence of gel forming agents, amount of risedronate and total weight of capsules on physical properties, in vitro buoyancy, drug release, FTIR, DSC, X-ray studies were investigated. The release mechanisms were explored and explained by applying zero order, first order, Higuchi and Korsmeyer equations. The selected formulations were subjected to stability study at 40 °C/75% RH, 25 °C/60% RH for the period of three months. For all formulations, kinetics of drug release from capsules followed Higuchi’s square root of time kinetic treatment heralding diffusion as predominant mechanism of drug release. Formulation containing 25 mg HPMC K4M and 75 mg HPMC K100 LV (F-8) showed zero order release profile. There was no significant change in the selected formulation, when subjected to accelerated stability conditions over a period of three months. X-ray imaging in six healthy human volunteers revealed a mean gastric retention period of 5.60 ± 0.77 hrs for the selected formulation. Stable, sustained release effervescent floating capsules of risedronate sodium could be prepared by wet granulation technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call