Abstract

As amino acids (AAs) are vital molecules in the metabolism of all living organisms and are the building blocks of enzymes, a 6-week feeding trial was conducted for determining the influence of dietary essential amino acid (EAA) deficiencies on pancreatic, plasma, and hepatic enzyme activities in silvery-black porgy (initial weight 4.7 ± 0.01g) juveniles. Eleven isoproteic (ca. 47%) and isoenergetic (ca. 20.5MJkg-1) diets were formulated including a control diet, in which 60% of dietary nitrogen were provided by intact protein (fish meal, gelatin, and wheat meal) and 40% by crystalline AA. The other 10 diets were formulated by 40% reduction in each EAA from the control diet. At the end of the experiment, fish fed with threonine-deficient diet showed the lowest survival rate (P < 0.05), whereas growth performance decreased in fish fed all EAA-deficient diets, although the reduction in body growth varied depending on the EAA considered. Pancreatic enzymes (trypsin, lipase, α-amylase, and carboxypeptidase A) activities significantly decreased in fish fed the EAA-deficient diets in comparison with fish fed the control diet (P < 0.05). Fish fed with the arginine-deficient diet had the highest plasma and liver alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels (P < 0.05). Plasma and liver lactate dehydrogenase and superoxide dismutase showed the highest and lowest values, respectively, in fish fed the arginine and lysine-deficient diets (P < 0.05). Plasma metabolites were significantly affected by dietary EAA deficiencies (P < 0.05). The results of this study suggesting dietary EAA deficiencies led to reduction in growth performance as well as pancreatic and liver malfunction. Furthermore, arginine and lysine are the most limited EAA for digestive enzyme activities and liver health in silvery-black porgy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.