Abstract
The barrier that protects the undamaged gastroduodenal mucosa from autodigestion by gastric juice is a dynamic multicomponent system. The major elements of this barrier are the adherent mucus gel layer, which is percolated by the HCO3- secretion from the underlying epithelial cells; the epithelial layer itself, which provides a permeability barrier and can rapidly repair superficial damage by a process of cell migration referred to as reepithelization or restitution; and a specially adapted vasculature, which provides a supply of HCO3- for transcellular transport and/or diffusion into the mucus layer. Passive diffusion of intestinal HCO3- into the lumen is particularly important when there is superficial damage resulting in increased leakiness of the mucosal epithelium. The process of reepithelization occurs by the migration of performed cells from gastric pits or duodenal crypts. This process is quite distinct from the wound healing and associated inflammatory response that accompany more severe injury or chronic damage. The adherent mucus gel acts as a physical barrier against luminal pepsin and provides a stable unstirred layer that supports surface neutralization of acid by mucosal HCO3-. Surface neutralization by mucosal HCO3- provides a major mechanism of protection against acid in the proximal duodenum. In the stomach, where luminal acidity can fall to around pH 1, other mechanisms of protection must exist, since the surface pH gradient is reported to collapse when luminal H+ exceeds approximately 10 mM. This collapse of the surface pH gradients may reflect, at least in part, that such studies have been mostly performed on non-acid-secreting mucosa where the supply of HCO3- to the interstitium from the parietal cells will be reduced. However, because the gastric mucosa can withstand prolonged exposure to acid without apparent damage, this implies an intrinsic resistance of the epithelial apical surface. This is amply illustrated within the gastric glands that do not secrete mucus and HCO3- yet are exposed to undiluted pepsin and an isotonic solution of HCl. Bicarbonate and mucus secretions together with mucosal blood flow are under paracrine, endocrine, and neural control. The rate of reepithelialization will depend on local chemotactic factors, adhesion mechanisms, and the creation of an acid/pepsin/irritant-free environment under a protective gelatinous or mucoid cap. If optimal conditions are met, then the rate of reepithelialization appears to depend primarily on the intrinsic properties of the migrating cells themselves rather than control by exogenous mediators.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.