Abstract
Pyroptosis, a form of inflammatory programmed cell death, plays a pivotal role in the pathogenesis of various diseases. This process is primarily mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3). Gastrodenol (Bismuth tripotassium dicitrate, GAS) is a mineral compound which is used to treat duodenal and gastric ulcers associated with Helicobacter pylori. In this study, GAS was found to exhibit protective effects against classical pyroptosis in macrophages. Specifically, GAS effectively inhibits the activation of the NLRP3 inflammasome, Gasdermin D (GSDMD)-mediated pyroptosis, and the secretion of pro-inflammatory cytokines. Mechanistically, GAS inhibited NLRP3 oligomerization and reduced the oligomerization of adaptor protein apoptosis-associated speck like protein containing a caspase activation and recruitment domain (ASC) by directly binding to NLRP3. The interaction between GAS and NLRP3 is primarily mediated through hydrogen bonding and hydrophobic forces. Hydrogen bonds are formed with PHE-727, LEU-723, and ASP-700. Remarkably, GAS treatment attenuated pyroptosis-mediated inflammatory diseases, including experimental autoimmune encephalomyelitis (EAE), lipopolysaccharide (LPS)-induced septic, and monosodium urate (MSU)-induced peritonitis in mice. To conclude, this is the first report that discovered clinical old medicine GAS as a potent inhibitor of pyroptosis and propose a novel therapeutic strategy for the prevention and treatment of NLRP3-GSDMD mediated diseases.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.