Abstract
This study evaluated the role of gastrocnemius-derived brain-derived neurotrophic factor (BDNF) and possible mechanism in motor improvement in T10 spinal cord transection (SCT) rats. There was complete paralysis in hindlimbs immediately after SCT, followed by partial functional restoration with time going. The level of BDNF but not its mRNA gradually increased in caudal stump after SCT, whereas a significant increase in both BDNF and its mRNA was simultaneously seen in gastrocnemius. Injection of BDNF antibody into the gastrocnemius significantly decreased hindlimb locomotor function, downregulated the level of BDNF and its mRNA together with extracellular signal-regulated kinase 1/2 (Erk1/2). Moreover, ventral root ligation led to decrease both BDNF and Erk in caudal stump, indicating BDNF transportation from gastrocnemius into the spinal cord. We concluded that gastrocnemius-derived BDNF reduced motor functional deficits in SCT rats through Erk signaling pathway. These novel findings suggested the usage of BDNF in muscle for the treatment of spinal cord injury in clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.