Abstract
Gait of children with spastic paresis (SP) is frequently characterized by a reduced ankle range of motion, presumably due to reduced extensibility of the triceps surae (TS) muscle. Little is known about how morphological muscle characteristics in SP children are affected. The aim of this study was to compare gastrocnemius medialis (GM) muscle geometry and extensibility in children with SP with those of typically developing (TD) children and assess how GM morphology is related to its extensibility. Thirteen children with SP, of which 10 with a diagnosis of spastic cerebral palsy and three with SP of unknown etiology (mean age 9.7 ± 2.1 years; GMFCS: I–III), and 14 TD children (mean age 9.3 ± 1.7 years) took part in this study. GM geometry was assessed using 3D ultrasound imaging at 0 and 4 Nm externally imposed dorsal flexion ankle moments. GM extensibility was defined as its absolute length change between the externally applied 0 and 4 Nm moments. Anthropometric variables and GM extensibility did not differ between the SP and TD groups. While in both groups, GM muscle volume correlated with body mass, the slope of the regression line in TD was substantially higher than that in SP (TD = 3.3 ml/kg; SP = 1.3 ml/kg, p < 0.01). In TD, GM fascicle length increased with age, lower leg length and body mass, whereas in SP children, fascicle length did not correlate with any of these variables. However, the increase in GM physiological cross-sectional area as a function of body mass did not differ between SP and TD children. Increases in lengths of tendinous structures in children with SP exceeded those observed in TD children (TD = 0.85 cm/cm; SP = 1.16 cm/cm, p < 0.01) and even exceeded lower-leg length increases. In addition, only for children with SP, body mass (r = −0.61), height (r = −0.66), muscle volume (r = − 0.66), physiological cross-sectional area (r = − 0.59), and tendon length (r = −0.68) showed a negative association with GM extensibility. Such negative associations were not found for TD children. In conclusion, physiological cross-sectional area and length of the tendinous structures are positively associated with age and negatively associated with extensibility in children with SP.
Highlights
Childhood spastic paresis (SP) is characterized by an upper motor neuron impairment, which is associated with gait abnormalities and limitations in mobility
Since one child with SP moved during the 3DUS imaging procedure, muscle volume could not be measured reliably, and VGM and Afasc could not be determined for this child
Measured at 0 Nm, muscle volume (VGM) was on average 47% smaller (−39.6 ml) in children with SP compared to typically developing (TD) children (Table 2)
Summary
Childhood spastic paresis (SP) is characterized by an upper motor neuron impairment, which is associated with gait abnormalities and limitations in mobility. Most children with SP are diagnosed with spastic cerebral palsy, which is an umbrella term for a clinically heterogeneous syndrome caused by congenital brain malformation or an acquired dysfunction of the immature brain during pregnancy, around birth, or during early development (Rosenbaum et al, 2007). Brain lesions in cerebral palsy are visible on magnetic resonance imaging (MRI). Some children show similar clinical features of SP without brain abnormalities. Several genetic abnormalities have been identified as a cause for Hereditary Spastic Paresis (HSP) (Parodi et al, 2018). We label a non-progressive upper motor neuron syndrome, without MRI abnormalities or a known genetic cause, a SP of unknown etiology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.