Abstract

Voltage-dependent potassium currents are important contributors to neuron excitability and thus also to hypersensitivity after tissue insult. We hypothesized that gastric ulcers would alter K(+) current properties in primary sensory neurons. The rat stomach was surgically exposed, and a retrograde tracer (1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine methanesulfonate) was injected into multiple sites in the stomach wall. Inflammation and ulcers were produced by 10 injections of 20% acetic acid (HAc) in the gastric wall. Saline (Sal) injections served as control. Nodose or T9-10 dorsal root ganglia (DRG) cells were harvested and cultured 7 days later to record whole cell K(+) currents. Gastric sensory neurons expressed transient and sustained outward currents. Gastric inflammation significantly decreased the A-type K(+) current density in DRG and nodose neurons (Sal vs. HAc-DRG: 82.9 +/- 7.9 vs. 46.5 +/- 6.1 pA/pF; nodose: 149.2 +/- 10.9 vs. 71.4 +/- 11.8 pA/pF), whereas the sustained current was not altered. In addition, there was a significant shift in the steady-state inactivation to more hyperpolarized potentials in nodose neurons (Sal vs. HAc: -76.3 +/- 1.0 vs. -83.6 +/- 2.2 mV) associated with an acceleration of inactivation kinetics. These data suggest that a reduction in K(+) currents contributes, in part, to increased neuron excitability that may lead to development of dyspeptic symptoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.