Abstract

Up to date, the way in which metal nanoparticles are cleared in vivo has yet to be elucidated well. Herein, we report a novel intestinal goblet cell-mediated in vivo clearance pathway to remove metal nanoparticles. Typical metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters were selected as representative examples. These metal nanoparticles were prepared, characterized, and injected via tail vein into a mice model with common bile duct (CBD) ligation. The feces and urines were collected for 7 days to be followed by the sacrifice of the mice and collection of the intestinal and gastric tissues for further analysis. The results showed that all four selected metal nanoparticles were located inside the goblet cells (GCs) of the whole intestinal tissue and were excreted into the gut lumen through the secretion of intestinal GC. Moreover, triangular silver nanoplates and gold nanorods were located inside the gastric parietal cells (PCs). Importantly, nanoparticles did not cause obvious pathological changes in intestinal tissues. In this study, we confirmed that the blood corpuscles are involved in the GCs secretion pathway. Furthermore, we found that the secretion of nanoparticles from intestinal GCs and PCs is accelerated by diarrhea induced via Chinese herbs. In conclusion, metal nanoparticles such as triangular silver nanoplates, magnetic nanoparticles, gold nanorods, and gold nanoclusters can be cleaned away by intestinal GCs and PCs. This novel pathway of in vivo clearance of metal nanoparticles has a great potential for future applications such as new drug design and development, nanoparticle-based labeling and in vivo tracking, and biosafety evaluation of in vivo nanoparticles.

Highlights

  • With the rapid development of nanotechnology and its applications, a wide variety of engineered nanostructure materials are used in pharmaceuticals, biomedical products, and other industries

  • Magnetic nanoparticles with 20 nm in diameter and Au nanoclusters with 5 nm in diameter were prepared, and their characterization is shown in Additional file 1: Figure S1 and S2 respectively

  • The Transmission electron microscopy (TEM) images and UV/vis spectra of Au nanorods are shown in Additional file 1: Figure S3

Read more

Summary

Introduction

With the rapid development of nanotechnology and its applications, a wide variety of engineered nanostructure materials are used in pharmaceuticals, biomedical products, and other industries. To investigate the impact of nanoparticles on the human body, their interactions with biological systems, and their potential risk assessments, nanotoxicology has been looked as one novel multidisciplinary subject, drawing increasing attention of governments and scientists, and establishing the biosafety of nanomaterials as a key scientific problem. With the development of novel molecular imaging techniques, metal nanoparticles such as gold nanoparticles, silver nanoparticles, magnetic nanoparticles, and quantum dots have been actively investigated as multifunctional theranostic reagents, and are used for in vivo targeted imaging, magnetic-induced heating, photothermal or photodynamic therapy, or as high-efficient drug delivery systems, among other applications. How to clean in vivo metal nanoparticles has become one challenging key scientific problem. To the present day, there are no convincing alternative pathways and detailed mechanisms to remove metal nanoparticles from the human body. How to clean metal nanoparticles in vivo has become our concern

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.