Abstract

Alterations in the microbiome are associated with the development of gastric cancer. Our study aimed to identify dysbiotic features in early gastric cancer (EC). The gastric microbiome was assessed in EC (n = 30), advanced gastric cancer (AC) (n = 30), and chronic gastritis (CG) (n = 60). The results demonstrated significant differences in the microbial profile and composition between EC and AC, suggesting alterations associated with gastric cancer progression. Linear discriminant analysis (LDA) effect size (LEfSe) analyses identified 32 bacterial genera that were associated with EC. Functional analyses of the gastric microbiome showed that the production of urease and synthesis of bacterial flagella were weakened in EC, while the glycolysis of fructose and hydrolysis of glycosides were enhanced. A classifier based on a random forest (RF) machine learning algorithm identified a microbial signature that distinguished EC from CG or AC with high accuracy. The correct identification of the signature was further validated in independent cohorts. This signature enriched of bacteria with varied abundance, high degree of bacterial interactions and carcinogenic potentials. Constrained principal coordinate analyses revealed that the presence of Helicobacter pylori and the cagA and vacA virulence genotypes influenced the structure of the gastric microbiome. To determine the impacts of host genetic variations on the gastric microbiome, six previously reported single nucleotide polymorphisms (SNPs) were examined. The minor allele of MUC1 rs4072037 was associated with an increased abundance of Ochrobactrum. The gastric microbiome altered in EC, which might be attributed in part to host genetic variations, H. pylori infection, bacterial virulence and environmental adaptations. The identified microbial signature could serve as biomarkers for clinical assessment of gastric cancer risk in high-risk patients.

Highlights

  • Gastric cancer is a leading cause of cancer-related death (Lu and Li, 2014)

  • There was no significant difference in the Chao 1 index between early gastric cancer (EC) and advanced gastric cancer (AC) (Figure 1B)

  • The results showed a minimal set of 24 bacterial genera that maximally differentiated EC from chronic gastritis (CG) (Figures 5A,B)

Read more

Summary

Introduction

Gastric cancer is a leading cause of cancer-related death (Lu and Li, 2014). Genetic variations and environmental factors such as Helicobacter pylori are involved in the development of gastric cancer. Microbial Signatures of Gastric Cancer microbiome shows a continuous structural and compositional shift from mucosal inflammation to intestinal metaplasia and gastric cancer (Aviles-Jimenez et al, 2014). This finding suggests a close association between the microbiome and the development of gastric cancer. Mice harboring different gastric microbiomes had differential incidences of inflammation and precancerous lesions (Ge et al, 2018). These findings indicate that variations in the microbiome contribute to carcinogenesis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call