Abstract

The maximum amount of acid-stable phosphoenzyme (E32P)/mol of alpha chain of pig gastric H/K-ATPase from [gamma-32P]ATP (K(1/2) = 0.5 microM) was found to be approximately 0.5, which was half of that formed from 32P(i) (K(1/2) = 0.22 mM). The maximum 32P binding for the enzyme during turnover in the presence of [gamma-32P]ATP or [alpha-32P]ATP was due to 0.5 mol of E32P + 0.5 mol of an acid-labile enzyme-bound [gamma-32P]ATP (EATP) or 0.5 mol of an acid-labile enzyme-bound [alpha-32P]ATP, respectively. The K(1/2) for EATP formation in both cases was 0.12 approximately 0.14 mM. The turnover number of the enzyme (i.e., the H+-ATPase activity/(EP + EATP)) was very close to the apparent rate constants for EP breakdown and P(i) liberation, both of which decreased with increasing concentrations of ATP. The ratio of the amount of P(i) liberated to that of EP that disappeared increased from 1 to approximately 2 with increasing concentrations of ATP (i.e., equal amounts of EP and EATP exist, both of which release phosphate in the presence of high concentrations of ATP). This represents the first direct evidence, for the case of a P-type ATPase, in which 2 mol of P(i) liberation occurs simultaneously from 1 mol of EP for half of the enzyme molecules and 1 mol of EATP for the other half during ATP hydrolysis. Each catalytic alpha chain is involved in cross-talk, thus maintaining half-site phosphorylation and half-site ATP binding which are induced by high- and low-affinity ATP binding, respectively, in the presence of Mg2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.