Abstract

Tumor microenvironment and metabolic reprogramming are critical for tumor metastasis. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are widely involved in the formation of tumor microenvironment and present oncogenic phenotypes to facilitate lymph node metastasis (LNM) in response to small extracellular vesicles (sEV) released by gastric cancer (GC) cells. However, whether metabolic reprograming mediates transformation of BM-MSCs remains elusive. Herein, we revealed that the capacity of LNM-GC-sEV educating BM-MSCs was positively correlated with the LNM capacity of GC cells themselves. Fatty acid oxidation (FAO) metabolic reprogramming was indispensable for this process. Mechanistically, CD44 was identified as a critical cargo for LNM-GC-sEV enhancing FAO via ERK/PPARγ/CPT1A signaling. ATP was shown to activate STAT3 and NF-κB signaling to induce IL-8 and STC1 secretion by BM-MSCs, thereby in turn facilitating GC cells metastasis and increasing CD44 levels in GC cells and sEV to form a persistent positive feedback loop between GC cells and BM-MSCs. The critical molecules were abnormally expressed in GC tissues, sera and stroma, and correlated with the prognosis and LNM of GC patients. Together, our findings uncover the role of metabolic reprogramming mediated BM-MSCs education by LNM-GC-sEV, which presents a novel insight into the mechanism underlying LNM and provides candidate targets for GC detection and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.