Abstract

AbstractBy evaluating the consistency of the Gassmann theory with various inclusion‐based effective medium theories, we investigate the impact of elastic interactions between ellipsoidal pores on the poroelasticity. To rule out any factors that can violate the Gassmann condition, other than elastic interactions, we first construct idealized models that contain only a single set of isolated, identical, and vertically aligned ellipsoidal pores. The numerical simulation suggests that the periodic distribution of ellipsoidal pores generate uniform pore pressure distribution, whereas random distribution of ellipsoidal pores generates heterogeneous pore pressure distributions. Then we analyze the precise conditions under which the underlying Gassmann relationship is valid for various inclusion‐based models. The results reveal the following: (1) Noninteracting effective medium theories are always consistent with the Gassmann prediction, simply because the elastic interactions are ignored. (2) The elastic interactions between randomly distributed pores cause heterogeneous pore pressure that violates the essential requirement of the Gassmann theory. The differential effective medium and self‐consistent approximation theories corresponding to this model thus are inconsistent with the Gassmann prediction. (3) The elastic interactions between periodically distributed pores cause uniform pore pressure; therefore, the Gassmann condition is fully satisfied. The T‐matrix approach explicitly takes into account such elastic interactions and thus is consistent with the Gassmann theory. It is interesting to notice that on top of other well‐known common types of heterogeneities, like pore structure or fluid heterogeneities, the distribution of pores and its associated elastic interactions can be a separate source of heterogeneity, and this makes Gassmann equations not valid anymore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call