Abstract

During hypoxia the respiratory network produces gasping in vivo and in vitro. To understand the mechanisms involved in such response and to validate in vitro findings, correlative studies are necessary. During perinatal age gasping generation is robust and then declines during postnatal development, possibly due to changes in either the rhythm generator (the pre-Bötzinger complex, PBC) and/or its motor outputs. We tested this hypothesis by recording respiratory response to hypoxia in vivo and in vitro during postnatal development. We found that postnatal age influences: (1) The hypoxia-induced pattern change in the PBC bursts, (2) The coupling between the PBC and the XII nucleus during prolonged hypoxia and (3) The ability of mice to gasp and autoresuscitate from hypoxic conditions. We conclude that the inability of mice to gasp during late postnatal development might be determined by a progressive uncoupling between the respiratory rhythm generator and its motor outputs in hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.