Abstract

The conformations of laser-desorbed jet-cooled short peptide chains Ac-Phe-Xxx-NH2 (Xxx=Gly, Ala, Val, and Pro) have been investigated by IR/UV double resonance spectroscopy and density-functional-theory (DFT) quantum chemistry calculations. Singly gamma-folded backbone conformations (betaL-gamma) are systematically observed as the most stable conformers, showing that in these two-residue peptide chains, the local conformational preference of each residue is retained (betaL for Phe and gamma turn for Xxx). Besides, beta turns are also spontaneously formed but appear as minor conformers. The theoretical analysis suggests negligible inter-residue interactions of the main conformers, which enables us to consider these species as good models of gamma turns. In the case of valine, two similar types of gamma turns, differing by the strength of their hydrogen bond, have been found both experimentally and theoretically. This observation provides evidence for a strong flexibility of the peptide chain, whose minimum-energy structures are controlled by side-chain/backbone interactions. The qualitative conformational difference between the present species and the reversed sequence Ac-Xxx-Phe-NH2 is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call