Abstract
We present results of a systematic examination of functionalized gold nanoparticles (Au-NPs) by electrospray-differential mobility analysis (ES-DMA). Commercially available, citrate-stabilized Au colloid solutions (10-60 nm) were sized using ES-DMA, from which changes in particle size of less than 0.3 nm were readily discerned. It was found that the formation of salt particles and the coating of Au-NPs by salt during the electrospray process can interfere with the mobility analysis, which required the development of sample preparation and data correction protocols to extract correct values for the Au-NP size. Formation of self-assembled monolayers (SAMs) of alkanethiol molecules on the Au-NP surface was detected from a change in particle mobility, which could be modeled to extract the surface packing density of SAMs. A gas-phase temperature-programmed desorption (TPD) kinetic study of SAMs on Au-NPs found the data to be consistent with a second-order Arrhenius-based rate law, yielding an Arrhenius factor of 1.0 x 10 (11) s (-1) and an activation energy approximately 105 kJ/mol. For the size range of SAM-modified Au-NP we considered, the effect of surface curvature on the energetics of binding of carboxylic acid terminated SAMs is evidently negligible, with binding energies determined by TPD agreeing with those reported for the same SAMs on planar surfaces. This study suggests that the ES-DMA can be added to the tool set of characterization methods used to study the structure and properties of coated nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.