Abstract
ABSTRACT Sulphur is an important and ubiquitous element of the interstellar medium (ISM). Despite its importance, its chemistry still needs to be elucidated, with one of the main issues being the missing sulphur problem. In this work, small molecular species, already detected in the ISM (SH, OH, H2CS, H2CO, H2S, H2O, HCS/HSC, and HCO), were combined to set five different gas-phase reactions for the formation of isomers belonging to the CH2SO family, with one of its member, namely trans-HC(O)SH, already identified as well. Through a state-of-the-art computational study, it has been found that, thermochemically, only one of the reactions considered is open in the ISM conditions: H2CS + OH can produce cis/trans-HC(S)OH and cis/trans-HC(O)SH via hydrogen-atom loss. Kinetically, the favoured product is trans-HC(S)OH followed by trans-HC(O)SH. In view of the recent detection of this latter, our study suggests that trans-HC(S)OH is a good candidate for astronomical observations. Since this species has never been studied experimentally, as a first step towards its laboratory characterization, accurate estimates of the rotational constants have been provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.